3D control of a high-speed quadruped trot
نویسندگان
چکیده
Purpose – Legged vehicles offer several advantages over wheeled vehicles, particularly on broken terrain, but are presently too slow to be considered for many high-speed tasks. This paper presents an effective 3D controller for a high-speed quadruped trot. Design/methodology/approach – To successfully regulate forward velocity and heading, secondary motions such as body pitch and roll must be stabilised. The complicated coupling between pitch and roll motion causes the control effort on one axis to disturb the motion and control effort of the other. Unlike the modular methods in previous research, the algorithm presented here employs a cooperative approach where pitch stability effort is directly accounted for by the roll controller. Findings – When the secondary motions such as pitch and roll are well stabilized, forward velocity and heading can be regulated up to 3 m/s and 208/s, respectively. Research limitations/implications – For many quadrupeds, trotting is usually employed as the precursor to galloping, which is ultimately used at top speeds. Because these two gaits are commonly used together, we expect their control algorithms to share a number of similar components. It is then expected that understanding the quadruped trot will serve as a valuable foundation to understanding the quadruped gallop. Originality/value – This appears to be the first reported regulation of quadruped heading while running at significant speeds.
منابع مشابه
Intelligent Control of High-Speed Turning in a Quadruped
Understanding and implementing the control mechanisms that animals use to robustly negotiate a variety of terrains at high speed remains an unsolved problem. Previous research has resulted in control of quadruped running over a range of low speeds or narrowly around a single high speed. Control over a range of both low and high speeds is difficult because a quadruped system is significantly mor...
متن کاملFeedforward and Feedback Dynamic trot Gait control for a Quadruped walking Vehicle
To realize dynamically stable walking for a quadruped walking robot, the combination of the trajectory planning of the body and leg position (feedforward control) and the adaptive attitude control using sensory information (feedback control) is indispensable. In this paper, we initially propose a new trajectory planning for the stable trot gait named 3D sway compensation trajectory, and show th...
متن کاملExperimental study on energy efficiency for quadruped walking vehicles
Though a legged robot has high terrain adaptability as compared with a wheeled vehicle, its moving speed is considerably low in general. For attaining a high moving speed with a legged robot, a dynamically stable gait, such as running for a biped robot and a trot gait or a bound gait for a quadruped robot, is a promising solution. However, the energy efficiency of the dynamically stable gait is...
متن کاملControl of a 3D Quadruped Trot
Legged vehicles offer several advantages over wheeled vehicles, particularly over broken terrain, but are presently too slow to be advantageous for many tasks. Trotting, the precursor to galloping for many quadrupeds, employs high-speed actuation to coordinate the intermittent ground contacts for each leg. Compliant elements and high-power actuators combine to perform a complex interchange of p...
متن کاملFeedforward and Feedback Dynamic Trot Gait Control for Quadruped Walking Vehicle
Abstract. To realize dynamically stable walking for a quadruped walking robot, the combination of the trajectory planning of the body and leg position (feedforward control) and the adaptive control using sensory information (feedback control) is indispensable. In this paper, we propose a new body trajectory, the 3D sway compensation trajectory, for a stable trot gait; we show that this trajecto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Industrial Robot
دوره 33 شماره
صفحات -
تاریخ انتشار 2006